BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 48 (11), 3383-3384 (1975)

Structural Changes of Iron Oxides by Ball-Milling in Different Media

Yasuhiko Uehara

Electron Tube Division, Hitachi Ltd., Hayano, Mobara, Chiba 297 (Received April 18, 1975)

Synopsis. γ -Fe₂O₃, Fe₃O₄, and α -Fe₂O₃ subjected to steel ball-milling in water changed into a spinel-type solid solution, while in polar organic media no remarkable changes occurred. In non-polar media, the γ -Fe₂O₃ and a part of the Fe₃O₄ were transformed into α -Fe₂O₃, although α -Fe₂O₃ remained unchanged. The diffraction lines of the resulting α -Fe₂O₃ broadened markedly.

 γ -Fe₂O₃ is known to be transformed irreversibly into α -Fe₂O₃ by such treatments as applying high pressure and grinding mechanically.^{1,2)} The transformation proceeds *via* the reconstruction of close-packed oxygen ion layers together with the displacement of ferric ions located at the interstices between the oxygen ions.^{3,4)} The present paper describes the structural changes of γ -Fe₂O₃, Fe₃O₄, and α -Fe₂O₃ caused by the ball-milling in different liquid media in order to clarify the effect of the medium.

The structure of γ -Fe₂O₃ is an inverse spinel with a lattice parameter of 8.350 Å accompanied by a superstructure which has an ordered arrangement of cation vacancies and ferric ions in a ratio of 1:3 at the octahedral sites. Fe₃O₄ is crystallographically isomorphous with γ -Fe₂O₃, having a lattice parameter (8.396 Å) slightly larger than that of γ -Fe₂O₃ (8.350 Å). Fe₃O₄ and γ -Fe₂O₃ form a γ -Fe₂O₃-Fe₃O₄ solid solution; this can be expressed by $\prod_{x/3}$ Fe_{3-x/3}O₄, where \prod is the cation vacancy and α is the degree of oxidation. α -Fe₂O₃ has a corundum-type rhombohedral structure, its unit cell having the lattice parameters α =5.427 Å and α =55°17′.

The γ -Fe₂O₃ used in this experiment showed a characteristic lattice parameter of 8.350 Å. The Fe₃O₄ used

has the lattice parameter of 8.386 Å, indicating a slight oxidation of the stoichiometric Fe_3O_4 . The particle shape of $\gamma\text{-Fe}_2\text{O}_3$ is rod-like approximately $0.8\,\mu$ in length and $0.2\,\mu$ in diameter. Both $\alpha\text{-Fe}_2\text{O}_3$ and Fe_3O_4 are spherical particles about $0.3\,\mu$ in diameter. $\gamma\text{-Fe}_2\text{-}\text{O}_3$, Fe_3O_4 , and $\alpha\text{-Fe}_2\text{O}_3$ powders were wet-milled in a steel ball mill having a capacity of $1.32\,l$. For each run, $30\,g$ of the sample and $90\,\text{ml}$ of the medium of extrapure grade were loaded into the ball mill. After milling at $90\,\text{rpm}$ for $80\,\text{h}$, the resultant product was dried under reduced pressure and then examined by X-ray diffraction, using Mn-filtered $\text{Fe}K_\alpha$ radiation. In order to compare the effect of different milling procedures, wetmilling in a porcelain ball mill and dry-grinding in an agate mortar were also carried out.

Table 1 shows the crystal structure, lattice parameter, and half-value width of each characteristic X-ray pattern of the products from γ -Fe₂O₃, Fe₃O₄, and α -Fe₂O₃ after 80 h of milling in the steel ball mill in the presence of different media. The structural changes occurred may be classified as follows:

- 1) In water, the spinel phase was stable and no significant line broadening of the X-ray diffraction lines was observed.
- 2) In polar organic media, neither structural changes nor line broadening was observed.
- 3) In a non-polar organic medium, the α-Fe₂O₃ phase was stable and nearly half of Fe₃O₄ was transformed into α-Fe₂O₃. However, a remarkable broadening of the diffraction patterns of both oxides was observed. When γ-Fe₂O₃ was milled in the steel ball mill in the

Table 1. Changes in crystal structure, lattice parameter, and half-value width of each characteristic X-ray pattern of the products from γ -Fe₂O₃, Fe₃O₄, and α -Fe₂O₃ after 80 hr of milling in the steel ball mill in different media

Medium		Dipole moment (D)	Starting material	Resultant product	Lattice parameter ^{b)} (Å)	Half-value width ^{e)} (degree)
			(γ-Fe ₂ O ₃	Spinel ^{a)}	8.371	0.30
Water		1.84	{Fe₃O₄	Spinel ^{a)}	8.393	0.25
			α -Fe ₂ O ₃	Spinel ^{a)}	8.371	0.30
			$(\gamma - Fe_2O_3)$	γ -Fe ₂ O ₃	8.350	0.31
	Methyl alcohol	1.69	$\{\mathrm{Fe_3O_4}$	$\mathrm{Fe_3O_4}$	8.386	0.26
Polar organic medium			α -Fe ₂ O ₃	α -Fe ₂ O ₃	5.427	0.25
			$(\gamma - \text{Fe}_2\text{O}_3)$	γ -Fe ₂ O ₃	8.350	0.30
	Isopropyl alcohol	1.66	$\{\mathrm{Fe_3O_4}$	Fe_3O_4	8.386	0.24
			α -Fe ₂ O ₃	α -Fe ₂ O ₃	5.427	0.25
	Acetone	2.69	γ -Fe ₂ O ₃	γ -Fe ₂ O ₃	8.350	0.31
Non-polar organic medium			γ - $\mathrm{Fe_2O_3}$	α -Fe ₂ O ₃	5.43	1.2
	Cyclohexane	0	Fe ₃ O ₄	α -Fe ₂ O ₃ +Fe ₃ O ₄	5.43	1.0
			α -Fe ₂ O ₃	α -Fe ₂ O ₃	5.43	1.0

a) Spinel: γ -Fe₂O₃-Fe₃O₄ solid solution. b) Lattice parameters of starting materials. γ -Fe₂O₃: 8.350 Å, Fe₃O₄: 8.386 Å, α -Fe₂O₃: 5.427 Å. c) Half-value widths for starting materials. γ -Fe₂O₃ (311): 0.27°, Fe₃O₄ (311): 0.20°, α -Fe₂O₃ (422): 0.22°.

presence of water, the lattice parameter changed from 8.350 Å to 8.371 Å, the superstructure lines such as (210), (211), and (300) disappeared completely and the color changed from brown to black. These facts indicate that y-Fe₂O₃ was reduced during the milling to give a y-Fe₂O₃-Fe₃O₄ solid solution. Fe₃O₄ was also reduced to some extent to give Fe₃O₄ containing less oxygen than the original Fe₃O₄, accompanied with a change in the lattice parameter from 8.386 Å to 8.393 Å. α-Fe₂O₃ showed a complete transformation from the rhombohedral into the spinel structure with a lattice parameter of 8.371 Å which coincides with that of the milled γ-Fe₂O₃. Meanwhile, the color of α-Fe₂O₃ changed from red to black. However, when γ-Fe₂O₃, Fe_3O_4 , and α - Fe_2O_3 were milled in a porcelain ball mill, no changes in the structure, lattice parameter, and color occurred. Therefore, it is likely that a mechano-chemical reaction is characteristic of the milling in the steel

When γ -Fe₂O₃, Fe₃O₄, and α -Fe₂O₃ were milled in such polar organic media as methyl alcohol, isopropyl alcohol, and acetone, their structures, lattice parameters, and colors remained unchanged. The diffraction lines were as sharp as they were in the case of milling in water.

When milled in non-polar cyclohexane, γ -Fe₂O₃ was completely transformed into α -Fe₂O₃. In the case of Fe₃O₄, nearly half of the sample was transformed into α -Fe₂O₃; the diffraction lines of the resultant α -Fe₂O₃ were found to be remarkably broadened. Nearly identical results were obtained from an experiment by drygrinding in an agate mortar.

During the milling, a microstrain concentrates in the

lattice increasing the lattice distortion and the strain energy.⁵⁾ The increase in the lattice distortion results in the X-ray line broadening.6) At the same time, the fresh surface produced by the milling is reactive with respect to the adsorption of polar molecules decreasing the surface energy and the fracture stress.7) The fact that the X-ray diffraction lines remained as sharp as before can be explained, if one accepts that the adsorption of polar molecules decreases the fracture stress avoiding a remarkable increase in the microstrain concentration in the lattice. In the case of milling in nonpolar media, on the other hand, the microstrain concentration increases gradually in the lattice and the X-ray diffraction lines become broader. In the case of milling in water, the sample is reduced to give a spinel phase containing less oxygen. In this reduction reaction during the milling, the mechano-chemical reaction between the sample, the water, and the fresh iron surfaces should be taken into consideration.

References

- 1) Y. Goto, Japan J. Appl. Phys., 3, 739 (1964).
- 2) M. Senna, S. Tojo, and H. Kubo, Nippon Kagaku Zasshi, 92, 780 (1971).
- 3) S. Kachi, K. Momiyama and S. Shimizu, J. Phys. Soc. Japan, 18, 106 (1963).
 - 4) J. Hornstra, J. Phys. Chem. Solids, 15, 311 (1960).
- 5) D. Lewis, D. O. Northwood, and R. C. Reeve, J. Appl. Cryst., 2, 156 (1969).
- 6) e.g., A. R. Stokes and A. J. C. Wilson, Proc. Phys. Soc., 56, 174 (1944).
 - 7) P. Rehbinder, Z. Phys., 72, 191 (1931).